ERRATA
Digital Signal Compression: Principles and Practice

William A. Pearlman and Amir Said
Dedication

To Eleanor

To Celli and Ricardo
1. Page 100, eqn. (5.44): add -1 within () for \(q > 0 \) and +1 in () for \(q < 0 \) to read:
\[
y = \begin{cases}
(q - 1 + t/2 + \xi)\Delta, & q > 0 \\
(q + 1 - t/2 - \xi)\Delta, & q < 0 \\
0, & q = 0
\end{cases}
\] (1)

2. Page 195, change sentence above (7.116) beginning with “Furthermore” to read:
“Furthermore, the basis for \(\phi(2^{-(k-1)}t) \) is the set \(\{ \phi(2^{-k}t - n) \} \).” (\(\phi(2^{-(k-1)}t) \) corrected and period appended.)

3. Page 223, Sec. 8.1.2.1, line 11: change “\(R_2 > R_D \)” to “\(R_2 < R_D \).”

4. Page 229, Algorithm 8.3, line below 2. Main: For \(n = 0, 1, 2, \ldots, N - 1 \)

5. In Sec. 8.2, page 236, the variance of the source in the frequency range of the \(m \)-th subband, \(\sigma_m^2 \), was omitted incorrectly in three places.
 i. Eqn. (8.42) should read
 \[
 \theta = \prod_m \left(V_m w_m g_m \sigma_m^2 \right)^{\eta_m} 2^{-aR} = \sigma_{WGM}^2 2^{-aR}
 \]
 ii. The definition of \(\sigma_{WGM}^2 \) below Eqn. (8.42)should be corrected to
 \[
 \sigma_{WGM}^2 = \prod_m \left(V_m w_m g_m \sigma_m^2 \right)^{\eta_m}.
 \]
 iii. The definition of \(\sigma_{WGM}^2 \) at the bottom of page 236 should be corrected to
 \[
 \sigma_{WGM}^2 = \prod_{m \in J_c} \left(V_m w_m g_m \sigma_m^2 \right)^{\eta_m}.
 \]

6. Page 242, Problem 8.1, line after equation of \(\rho(r) \): change “Problem 8.3” to “Problem 7.3”.

7. Page 402, 3rd line below (14.6): change “there is more” to “there are more”.
