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1 Introduction8

Compression of 3D data volumes poses a challenge to the data compression9

community. Lossless or near lossless compression is often required for these 3D10

data, whether medical images or remote sensing hyperspectral images. Due to11

the huge amount of data involved, even the compressed images are significant12

in size. In this situation, progressive data encoding enables quick browsing of13

the image with limited computational or network resources.14

For satellite sensors, the trend is toward increase in the spatial resolution,15

the radiometric precision and possibly the number of spectral bands, leading16

to a dramatic increase in the amount of bits generated by such sensors. Of-17

ten, continuous acquisition of data is desired, which requires scan-based mode18

compression capabilities. Scan-based mode compression denotes the ability to19

begin the compression of the image when the end of the image is still under20

acquisition. When the sensor resolution is below one meter, images contain-21

ing more than 30000 × 30000 pixels are not exceptional. In these cases, it is22

important to be able to decode only portions of the whole image. This feature23

is called random access decoding.24

Resolution scalability is another feature which is appreciated within the re-25

mote sensing community. Resolution scalability enables the generation of a26

quicklook of the entire image using just few bits of coded data with very lim-27

ited computation. It also allows the generation of low resolution images which28
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can be used by applications that do not require fine resolution. More and29

more applications of remote sensing data are applied within a multiresolution30

framework [1, 2], often combining data from different sensors. Hyperspectral31

data should not be an exception to this trend. Hyperspectral data applications32

are still in their infancy and it is not easy to foresee what the new application33

requirements will be, but we can expect that these data will be combined with34

data from other sensors by automated algorithms. Strong transfer constraints35

are more and more present in real remote sensing applications as in the case36

of the International Charter: space and major disasters [3]. Resolution scal-37

ability is necessary to dramatically reduce the bitrate and provide only the38

necessary information for the application.39

The SPIHT algorithm is a good candidate for on-board hyperspectral data40

compression. A modified version of SPIHT is currently flying towards the41

67P/Churyumov-Gerasimenko comet and is targeted to reach in 2014 (Rosetta42

mission) among other examples. This modified version of SPIHT is used to43

compress the hyperspectral data of the VIRTIS instrument [4]. This interest is44

not restricted to hyperspectral data. The current development of the CCSDS45

(Consultative Committee for Space Data Systems, which gathers experts from46

different space agencies as NASA, ESA and CNES) is oriented towards zero-47

trees principles [5] because JPEG 2000 suffers from implementation difficulties48

as described in [6] (in the context of implementation compatible with space49

constraints).50

Several papers develop the issue of adaptation from 2D coding to 3D coding51

using zerotree based methods. One example is adaptation to multispectral52

images in [7] through a Karhunen-Loeve Transform on the spectral dimen-53

sion and another is to medical images where [8] uses an adaptation of the54

3D SPIHT, first presented in [9]. In [10], a more efficient tree structure is55

defined and a similar structure proved to be nearly optimal in [11]. To in-56

crease the flexibility and the features available as specified in [12], modifica-57

tions are required. Few papers focus on the resolution scalability, as is done in58

papers [9, 13–16], adapting SPIHT or SPECK algorithms. However none of-59

fers to differentiate the different directions along the coordinate axes to allow60

full spatial resolution with reduced spectral resolution. In [13] and [14], the61

authors report a resolution and quality scalable SPIHT, but without the ran-62

dom access capability to be enabled in our proposed algorithm. The problem63

of error resilience is developed in [17] on a block-based version of 3D-SPIHT.64

Adapting 3D-SPECK for region of interest (ROI) coding appears in [18] and65

one adaptation of SBHP for ROI coding is described in [19]. However, to the66

authors’ knowledge, no paper presents the combination of all these features67

doing a rate distortion optimization between blocks and to maintain optimal68

rate-distortion performance and preserve the property of quality scalability.69

This paper presents the adaptation of the well-known SPIHT algorithm [20]70
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for 3D data enabling random access and resolution scalability or quality scal-71

ability. Compression performance is compared with JPEG 2000 [21].72

2 Data decorrelation and tree structure73

2.1 3D anisotropic wavelet transform74

Hyperspectral images contain one image of the scene for different wavelengths,75

thus two dimensions of the 3D hyperspectral cube are spatial and the third76

one is spectral (in the physics sense). Medical magnetic resonance (MR) or77

computed tomography (CT) images contain one image for each slice of ob-78

servation, in which case the three dimensions are spatial. However the reso-79

lution and statistical properties of the third direction are different. To avoid80

confusion, the first two dimensions are referred as spatial, whereas the third81

one is called spectral. An anisotropic 3D wavelet transform is applied to the82

data for the decorrelation. This decomposition consists of performing a clas-83

sic dyadic 2D wavelet decomposition on each image plane followed by a 1D84

dyadic wavelet decomposition in the third direction. The obtained subband85

organization is represented on Figure 1. The decomposition is non-isotropic86

as not all subbands are regular cubes and some directions are privileged. It87

has been shown that this anisotropic decomposition is nearly optimal in a88

rate-distortion sense in terms of entropy [22] as well as real coding [11]. To89

the authors’ knowledge, this is valid for 3D hyperspectral data as well as 3D90

magnetic resonance medical images and video sequences. This transform has91

been used in many papers about 3D image compression as [7, 9, 10, 17, 23].92

Moreover, this is the only 3D wavelet transform supported by the JPEG 200093

standard in Part II [24].94

x
y

Low
frequencies

High
frequencies

λ

Fig. 1. Wavelet decomposition subbands. It is illustrated here with 3 decompositions
levels for simplicity, 5 levels are used in practice.

The implementation of this particular wavelet transform is beyond the scope95
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of this paper. The open source implementation QccPack [25] is used to perform96

the direct wavelet transform as well as the inverse transform. The 5/3 integer97

wavelet transform is available as well in the latest version.98

2.2 Tree structure99

The SPIHT algorithm [20] uses a tree structure to define a relationship be-100

tween wavelet coefficients from different subbands. To adapt the SPIHT al-101

gorithm on the anisotropic decomposition, a suitable tree structure is de-102

fined. In [10], the relation between the coefficients from the lowest frequency103

subband and its descendants are defined in the manner of the first version104

of SPIHT [26]. We keep the latest version as defined in [20]. Let us define105

Ospat(i, j, k) as the spatial offspring of the pixel located at sample i, line j in106

plane k. The first coefficient in the upper front, left corner is noted as (0, 0, 0).107

In the spatial direction, the relation is similar to the one defined in the original108

SPIHT. Except at the highest and lowest spatial frequency subbands, we have:109

Ospat(i, j, k) = {(2i, 2j, k), (2i+1, 2j, k), (2i, 2j+1, k), (2i+1, 2j+1, k)}. In the110

highest spatial frequency subbands, there are no offspring: Ospat(i, j, k) = ∅111

and in the lowest frequency subband, coefficients are grouped in 2 × 2 as the112

original SPIHT. If we call ns the number of samples per line and nl the number113

of lines in the lowest frequency subband, we have:114

• if i even and j even: Ospat(i, j, k) = ∅115

• if i odd and j even: Ospat(i, j, k) = {(i+ns, j, k), (i+ns +1, j, k), (i+ns, j +116

1, k), (i + ns + 1, j + 1, k)}117

• if i even and j odd: Ospat(i, j, k) = {(i, j +nl, k), (i+1, j +nl, k), (i, j +nl +118

1, k), (i + 1, j + nl + 1, k)}119

• if i odd and j odd: Ospat(i, j, k) = {(i+ns, j+nl, k), (i+ns+1, j+nl, k), (i+120

ns, j + nl + 1, k), (i + ns + 1, j + nl + 1, k)}121

The spectral offspring Ospec(i, j, k) are defined in a similar way but only for122

the lowest spatial subband: if i ≥ ns or j ≥ nl we have Ospec(i, j, k) = ∅.123

Otherwise, apart from the highest and lowest spectral frequency subbands,124

we have Ospec(i, j, k) = {(i, j, 2k), (i, j, 2k + 1)} for i < ns and j < nl. In the125

highest spectral frequency subbands, there is no offspring: Ospec(i, j, k) = ∅126

and in the lowest, coefficients are grouped by 2 to have a construction similar127

to SPIHT. Let nb be the number of planes in the lowest spectral frequency128

subband:129

• if i < ns, j < nl, k even: Ospec(i, j, k) = ∅130

• if i < ns, j < nl, k odd: Ospec(i, j, k) = {(i, j, k + nb), (i, j, k + nb + 1)}131

In case of an odd number of coefficients in the lowest spectral subband, if nb132

is an odd number, the above definition is slightly altered and the last even133
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coefficient of the lowest spectral subband will have one descendant only.134

With these relations, we have a separation in non-overlapping trees of all135

the coefficients of the wavelet transform of the image. The tree structure is136

illustrated in Figure 2 for three levels of decomposition in each direction. Each137

of the coefficients is the descendant of a root coefficient located in the lowest138

frequency subband. It has to be noted that all the coefficients belonging to139

the same tree correspond to a similar area of the original image, in the three140

dimensions.141

λ

x
y

Fig. 2. Illustration of the tree structure. All descendants for a coefficient (i, j, k)
with i and k being odds and j being even are shown.

We can compute the maximum number of descendants for a root coefficient142

(i, j, k) for a 5 level spatial and spectral decomposition. The maximum of143

descendants occurs when k is odd and at least either i or j is odd. For this144

situation, we have 1 + 2 + 22 + . . . + 25 = 26 − 1 spectral descendants and for145

each of these we have 1+22+(22)2+(23)2+. . .+(25)2 = 20+22+24+. . .+210 =146

(212 − 1)/3 spatial descendants. Let lspec be the number of decomposition in147

the spectral direction and lspac in the spatial direction we obtain the general148

formula:149

ndesc = (2lspec+1 − 1)
22(lspac+1) − 1

3
(1)

Thus the number of coefficients in the tree is at most 85995 (lspec = 5 and150

lspat = 5) if the given coefficient has both spectral and spatial descendants.151

Coefficient (0, 0, 0), for example, has no descendant at all.152
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3 Block coding153

3.1 Why Block Coding?154

To provide random access, it is necessary to encode separately different areas155

of the image. Encoding separately portions of the image provides several other156

advantages. First, scan-based mode compression is made possible as the whole157

image is not necessary. Once again, we do not consider here the problem of158

the scan-based wavelet transform which is a separate issue. Secondly, encoding159

parts of the image separately also provides the ability to use different com-160

pression parameters for different parts of the image, enabling the possibility of161

high quality region of interest (ROI) and the possibility of discarding unused162

portions of the image. An unused portion of the image could be an area with163

clouds in remote sensing or irrelevant organs in a medical image. Third, trans-164

mission errors have a more limited effect in the context of separate coding; the165

error only affects a limited portion of the image. This strategy has been used166

for this particular purpose on the EZW algorithm in [27]. Finally, one limiting167

factor of the SPIHT algorithm is the complicated list processing requiring a168

large amount of memory. If the processing is done only on one part of the169

image at a a time, the number of coefficients involved is dramatically reduced170

and so is the memory necessary to store the control lists in SPIHT.171

Fig. 3. Equivalence of the block structure for 2D, all coefficients in grey belong to
the same block. In the following algorithm, an equivalent 3D block structure is used.

3.2 How?172

With the tree structure defined in the previous section, a natural block or-173

ganization appears. A tree-block (later simply referred to as block) is defined174
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by 8 coefficients from the lowest subband forming a 2 × 2 × 2 cube with all175

their descendants. All the coefficients linked to the root coefficient in the low-176

est subband shown on Figure 2 are part of the same tree-block together with177

seven other trees. Grouping the coefficients by 8 enables the use of neighbor178

similarities between coefficients. This is similar to the grouping of 2 × 2 in179

the original SPIHT patent [28] (see Fig. 3) and, as described in the previously180

mentioned patent, enables the possibility of including a Huffman coder for the181

8 decision bits as the 8 coefficients values are strongly related. Results in this182

paper do not include this possible improvement.183

Another advantage of this grouping is that the number of coefficients in each184

block will be the same, the only exception being the case where at least one185

dimension of the lowest subband is odd. The number of coefficients in one of186

these blocks can be calculated. In a 2× 2× 2 root group, we have three coeffi-187

cients which have the full sets of descendants, whose number is given by (1),188

three have only spatial descendants, one has only spectral descendants, and189

the last one has no descendant. The number of coefficients in a block, which190

determines the maximum amount of memory necessary for the compression,191

will finally be 262144 = 218 (valid for 5 decompositions in the spatial and192

spectral directions).193

Each of these blocks will be encoded using a modified version of the SPIHT194

algorithm as described in the next section.195

4 Enabling resolution scalability196

4.1 Original SPIHT algorithm197

The original SPIHT algorithm processes the coefficients bitplane by bitplane.198

Coefficients are stored in three different lists according to their significance.199

The LSP (List of Significant Pixels) stores the coefficients that have been200

found significant in a previous bitplane and that will be refined in the following201

bitplanes. Once a coefficient is on the LSP, it will not be removed from it and202

this list is only growing. The LIP (List of Insignificant Pixels) contains the203

coefficients which are still insignificant, relative to the current bitplane and204

which are not part of a tree from the third list (LIS). Coefficients in the LIP are205

transferred to the LSP when they become significant. The third list is the LIS206

(List of Insignificant Sets). A set is said to be insignificant if all descendants,207

in the sense of the previously defined tree structure, are not significant in the208

current bit plane. For the bitplane t, we define the significance function St of209

a set T of coefficients :210
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St(T ) =











0 if ∀c ∈ T , |c| < 2t

1 if ∃c ∈ T , |c| ≥ 2t
(2)

If T consists of a single coefficient, we denote its significance function by211

St(i, j, k).212

Let D(i, j, k) be all descendants of (i, j, k), O(i, j, k) only the offspring (i.e.213

the first level descendants) and L(i, j, k) = D(i, j, k) − O(i, j, k), the grand-214

descendant set. A type A tree is a tree where D(i, j, k) is insignificant (all215

descendants of (i, j, k) are insignificant) ; a type B tree is a tree where L(i, j, k)216

is insignificant (all grand-descendants of (i, j, k) are insignificant).217

4.2 Introducing resolution scalability218

SPIHT does not distinguish between different resolution levels. To provide219

resolution scalability, we need to process separately the different resolutions.220

A resolution comprises 1 or 3 subbands. To enable this we keep three lists for221

each resolution level r. Keeping separate lists for each resolution was done in222

the 2D case in [13] but it is not clear how they avoid the problem posed by223

this separation (described in 4.3). When r = 0 only coefficients from the low224

frequency subbands will be processed. Coefficients are processed according to225

the resolution level to which they correspond. For a 5-level wavelet decompo-226

sition in the spectral and spatial direction, a total of 36 resolution levels will227

be available (illustrated on Fig. 4 for 3-level wavelet and 16 resolution levels228

available). Each level r keeps in memory three lists: LSPr, LIPr and LISr.229

x
y
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Fig. 4. Illustration of the resolution level numbering. If a low resolution image
is required (either spectral or spatial), only subbands with a resolution number
corresponding to the requirements are processed.

Some difficulties arise from this organization and the progression order to230
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follow (Fig. 5). If the priority is given to full resolution scalability compared231

to the bit plane scalability, some extra precautions have to be taken. The232

different possibilities for scalability order are discussed in the next subsection.233

In the most complicated case, where all bit planes for a given resolution r are234

processed before the descendant resolution rd (full resolution scalability), the235

last element to process for LSPrd
, LIPrd

and LISrd
for each bitplane t has to236

be remembered. Details of the algorithm are given below.237

This new algorithm provides strictly the same amount of bits as the origi-238

nal SPIHT. The bits are just organized in a different order. With the block239

structure, the memory usage during the compression is dramatically reduced.240

The resolution scalability with its several lists does not increase the amount241

of memory necessary as the coefficients are just spread onto different lists.242

4.3 Switching loops243

The priority of scalability type can be chosen by the progression order of the244

two ’for’ loops (highlighted in boldface type) in the previous algorithm. As245

written, the priority is resolution sclability, but these loops can be inverted246

to give quality scalability. The different progression orders are illustrated in247

Figure 5 (a) and (b). Processing the resolution completely before proceeding248

to the next one (Fig. 5 (b)) requires more precautions. When processing reso-249

lution r, a significant descendant set is partitioned into its offspring in rd and250

its grand-descendant set. Therefore, some coefficients are added to LSPrd
in251

the step marked (2) in Algorithm 2 (the problem is similar for the LIPrd
and252

LISrd
). So even before processing resolution rd, the LSPrd

may contain some253

coefficients which were added at different bitplanes. The possible contents of254

an LSPrd
are shown below in Equation (3) (the bitplane when a coefficient255

was added to the list is given in parentheses following the coordinate):256

LSPrd
= {(i0, j0, k0)(t19), (i1, j1, k1)(t19), . . .

(in, jn, kn)(t12), . . .

(in′ , jn′, kn′)(t0), . . .}, (3)

19 being the highest bitplane in this case (depending on the image).257

When we process LSPrd
we should skip entries added at lower bitplanes than258

the current one. For example, there is no meaning to refine a coefficient added259

at t12 when we are working in bitplane t18.260

Furthermore at the step marked (1) in the algorithm above, when processing261

resolution rd we add some coefficients in LSPrd
. These coefficients have to262
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be added at the proper position within LSPrd
to preserve the order. When263

adding a coefficient at step (1) for the bitplane t19, we insert it just after264

the other coefficient from bitplane t19 (at the end of the first line of Eqn. (3).265

Keeping the order avoids looking through the whole list to find the coefficients266

to process at a given bitplane and can be done simply with a pointer.267

The bitstream structure obtained for this algorithm is shown in Figure 6 and268

called resolution scalable structure. If the resolution scalability is not a pri-269

ority anymore and more SNR scalability is needed, the ’for’ loops, stepping270

through resolutions and bitplanes, can be inverted to process one bitplane271

completely for all resolutions before going for the next bitplane. In this case272

the bitstream structure obtained is different and illustrated in Figure 7 and is273

called quality scalable structure. The differences between scanning order are274

shown on Figure 5.275

Bitplane

Resolution

MSB LSB

Low 
freq.

High 
freq.

(a)

Bitplane

Resolution

MSB LSB

Low 
freq.

High 
freq.

(b)

Fig. 5. Scanning order for SNR scalability (a) or resolution scalability (b)

Bk t19 t19t19 t18 t18t18 t17t17

R0 R1 R2

Fig. 6. Resolution scalable bitstream structure. R0, R1, . . . denote the different res-
olutions, and t19, t18, . . . the different bitplanes. This bitstream corresponds to the
coding of one block Bk.

Bk

t19 t18 t17

R0 R0R0 R1 R1R1 R2R2

Fig. 7. Quality scalable bitstream structure. R0, R1, . . . denote the different reso-
lutions, and t19, t18, . . . the different bitplanes. This bitstream corresponds to the
coding of one block Bk.

The algorithm described above possesses great flexibility and the same im-276

age can be encoded up to an arbitrary resolution level or down to a certain277

bitplane, depending on the two possible loop orders. The decoder can just pro-278

ceed to the same level to decode the image. However, an interesting feature279

to have is the possibility to encode the image only once, with all resolution280

and all bitplanes and then during the decoding to choose which resolution281

and which bitplane to decode. One may need only a low resolution image with282

high radiometric precision or a high resolution portion of the image with rough283

radiometric precision.284

When the resolution scalable structure is used (Fig. 6), it is easy to decode up285
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to the desired resolution, but if not all bitplanes are necessary, we need a way286

to jump to the beginning of resolution 1 once resolution 0 is decoded for the287

necessary bitplanes. The problem is the same with the quality scalable struc-288

ture (Fig. 7) exchanging bitplane and resolution in the problem description.289

To overcome this problem, we need to introduce a block header describing the290

size of each portion of the bitstream. The new structures are illustrated in291

Figures 8 and 9. The cost of this header is negligible: the number of bits for292

each portion is coded with 24 bits, enough to code part sizes up to 16 Mbits.293

The lowest resolutions (resp. the highest bitplanes) which are using only few294

bits will be processed fully, whatever the specification is at the decoder as the295

cost in size and processing is low and therefore their sizes need not to be kept.296

Only the sizes of long parts are kept: we do not keep the size individually for297

the first few bitplanes or the first few resolutions, since they will be decoded298

in any case. Only lower bitplanes and higher resolutions (size of parts is in299

general well above 10000 bits), which comprises about 10 numbers (each coded300

with 32 bits to allow sizes up to 4Gb), to be written to the bitstream. Then,301

this header cost will remain below 0.1%.302

Bk

l0

l1

l2

l3

t19 t19t19 t18 t18t18 t17t17

R0 R1 R2

Fig. 8. Resolution scalable bitstream structure with header. The header allows the
decoder to jump directly to resolution 1 without completely decoding or reading
resolution 0. R0, R1, . . . denote the different resolutions, t19, t18, . . . the different
bitplanes. li is the size in bits of Ri.

Bk

l19

l18

l17

l16

t19 t18 t17

R0 R0R0 R1 R1R1 R2R2

Fig. 9. Quality scalable bitstream structure with header. The header allows the
decoder to continue the decoding of a lower bitplane without having to finish all
the resolution at the current bitplane. R0, R1, . . . denote the different resolutions,
t19, t18, . . . the different bitplanes. li is the size in bits of the bitplane corresponding
to ti.

As in [13], simple markers could have been used to identify the beginning of303

new resolutions of new bitplanes. Markers have the advantage to be shorter304

than a header coding the full size of the following block. However, markers305

make the full reading of the bitstream compulsory and the decoder cannot306

just jump to the desired part. As the cost of coding the header remains low,307

this solution is chosen.308
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5 Drawbacks of block processing and introduction of rate alloca-309

tion310

5.1 Rate allocation and keeping the SNR scalability311

The problem of processing different areas of the image separately always re-312

sides in the rate allocation for each of these areas. A fixed rate for each area313

is usually not a suitable decision as complexity most probably varies across314

the image. If quality scalability is necessary for the full image, we need to pro-315

vide the most significant bits for one block before finishing the previous one.316

This could be obtained by cutting the bitstream for all blocks and interleav-317

ing the parts in the proper order. With this solution, the rate allocation will318

not be available at the bit level due to the block organization and the spatial319

separation, but a trade-off with quality layers organization can be used.320

5.2 Layer organization and rate-distortion optimization321

The idea of quality layers is to provide in the same bitstream different tar-322

geted bitrates. For example, a bitstream can provide two quality layers: one323

quality layer for 1.0 bit per pixels (bpp) and one quality layer for 2.0 bpp.324

If the decoder needs a 1.0 bpp image, just the beginning of the bitstream is325

transferred and decoded. If a higher quality 2.0 bpp image is needed, the first326

layer is transmitted, decoded and then refined with the information from the327

second layer.328

As the bitstream for each block is already embedded, to construct these layers,329

we just need to select the cutting points for each block and each layer leading330

to the correct bitrate with the optimal quality for the entire image. Once331

again, it has to be a global optimization and not only local, as complexity will332

vary across blocks.333

A simple Lagrangian optimization method [29] gives the optimal cutting point334

for each block Bk. As each block is coded in an embedded way, choosing a335

different cutting point will lead to a different rate Rk and a different distortion336

Dk. As the blocks are coded independently, their rates are additive and the337

final rate R =
∑

Rk. The distortion measure can be chosen as additive to have338

the final distortion D =
∑

Dk. A suitable measure is the squared error. Let c339

be a coefficient of the original image and c̃ its corresponding reconstruction,340

then341
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Dk =
∑

c∈Bk

(c − c̃)2 (4)

The minimization of the Lagrangian objective function

J(λ) =
∑

k

(Dk + λRk) (5)

tells us that, given a parameter λ, the optimal cutting point for each block342

Bk is the one which minimizes the cost function Jk(λ) = Dk + λRk [29]. For343

each λ and each block Bk, it gives us an optimal function point (Rλ
k , D

λ
k). The344

total bitrate for a given λ is Rλ =
∑

Rλ
k and the total distortion Dλ =

∑

Dλ
k .345

By varying the λ parameter, an arbitrarily chosen bitrate is attainable. This346

simple algorithm appeared to be very similar to the PCRD-opt process used347

in JPEG 2000 for the rate allocation [30].348

This optimization process leads to interleaving the bitstream for the different349

blocks. After the coding of each block, we need to keep the coded data in350

memory in order to perform this optimization. This could be seen as a high351

cost to keep the coded data in memory, but it has to be highlighted that in352

order to obtain progressive quality data we need to keep either the full image353

or the full bitstream in memory. Keeping the bitstream costs less than keeping354

the original image. However this is not compatible with the requirements for355

scan-based mode image coding. In this situation, a trade-off can be found356

doing the rate allocation for a group of blocks and using a buffer to balance a357

part of the complexity difference between the groups of blocks.358
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B1

B2
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λ0
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λ1

λ1

λ1

t19

t19

t19

t18

t18
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t17

t17

t17

R0 R0R0

R0 R0R0

R0 R0R0

R1 R1R1

R1 R1R1

R1 R1R1

R2

R2R2

R2R2

R2R2

Fig. 10. An embedded scalable bitstream generated for each block Bk. The rate-dis-
tortion algorithm selects different cutting points corresponding to different values
of the parameter λ. The final bitstream is illustrated on Fig. 11.

Layer 0: Layer 1: 

B0B0 B1B1 B2

λ0 λ1

l(B0, λ0) l(B1, λ0) l(B2, λ0) l(B0, λ1) l(B1, λ1)

R0 R0R0R0R0R0R0 R1 R1R1R1R1R1 R2R2R2R2R2R2

Fig. 11. The bitstreams are interleaved for different quality layers. To permit the
random access to the different blocks, the length in bits of each part corresponding
to a block Bk and a quality layer corresponding to λq is given by l(Bk, λq)
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5.3 Low cost distortion tracking: during the compression359

In the previous part, we assumed that the distortion was known for every360

cutting point of the bitstream for one block. As the bitstream for one block361

is in general about several millions of bits, it is not conceivable to keep all362

this distortion information in memory. Only few hundred cutting points are363

remembered with their rate and distortion information.364

Getting the rate for one cutting point is the easy part: one just has to count365

the number of bits before this point. The distortion requires more processing.366

The distortion value during the encoding of one block can be obtained with367

a simple tracking. Let us consider the instant in the compression when the368

encoder is adding one precision bit for one coefficient c at the bitplane t. Let369

ct denote the new approximation of c in the bitplane t given by adding this370

new bit. ct+1 was the approximation of c at the previous bitplane.371

SPIHT uses a deadzone quantizer so if the refinement bit is 0 we have ct =372

ct+1 − 2t−1 and if the refinement bit is 1 we have ct = ct+1 + 2t−1. Let call373

Da the total distortion of the block after this bit was added and Db the total374

distortion before. We have:375

• with a refinement bit of 0:376

Da − Db = (c − ct)
2 − (c − ct+1)

2

= (ct+1 − ct)(2c − ct − ct+1)

= 2t−1
(

2(c − ct+1) + 2t−1
)

(6)

giving377

Da = Db + 2t−1
(

2(c − ct+1) + 2t−1
)

(7)

• with a refinement bit of 1:378

Da = Db − 2t−1
(

2(c − ct+1) − 2t−1
)

(8)

Since this computation can be done using only right and left bit shifts and379

additions, the computational cost is low. The algorithm does not need to know380

the initial distortion value as the rate-distortion method holds if distortion is381

replaced by distortion reduction. The value can be high and has to be kept382

internally in a 64 bit integer. As seen before, we have 218 coefficients in one383

block, and for some of them, the value can reach 220. Therefore 64 bits seems384

a reasonable choice and remains valid for the worst cases.385

The evaluation of the distortion is done in the transform domain, directly on386
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the wavelet coefficients. This can be done only if the transform is orthogonal.387

The 9/7 transform from [31] is approximately orthogonal. In [32], the compu-388

tation of the weight to apply to each wavelet subband for the rate allocation389

is detailled. In our case with 5 decompositions on 3 dimensions, it has to be390

noted that these energy-based weights can be as low as 0.773 and as high as391

1.126. Then equations 7 and 8 are modified to introduce the weight:392

Da = Db + wx,y,l ∗ 2t−1
(

2(c − ct+1) + 2t−1
)

(9)

Da = Db − wx,y,l ∗ 2t−1
(

2(c − ct+1) − 2t−1
)

(10)

5.4 λ search: final bitstream formation393

Usually, we are interested in specifying a certain bitrate R for a given quality394

layer rather than a meaningless parameter λ. To specify a targeted bitrate, we395

have to find the right value for λ that will give this global bitrate R(λ) = R.396

Theorem 1 ( [29]) Let λ1 and λ2 be two different Lagrangian parameters as397

λ1 < λ2. Let (R1, D1) be the solution of min{D + λ1R} and (R2, D2) be the398

solution of min{D + λ2R}. Then we have R1 ≥ R2.399

(R1, D1) is the solution of min{D + λ1R} thus D1 + λ1R1 ≤ D2 + λ1R2. We400

have likewise D2 + λ2R2 ≤ D1 + λ2R1. Adding these inequalities, we get401

λ1R1 + λ2R2 ≤λ1R2 + λ2R1

(λ1 − λ2)R1 ≤ (λ1 − λ2)R2

R1 ≥R2

Using this property, we can use a fast search algorithm to find the value of λ402

which is going to give the targeted bitrate. From a starting value λ, the bitrate403

R(λ) is calculated. According to the relative value of R(λ) and R, the value404

of λ is modified. A dichotomic search is particularly efficient in this situation.405

It has to be emphasized that this computation for the bitstream ordering406

occurs after the block compression and only involves the cutting points stored407

in memory. The search does not need to reprocess or access the original or408

compressed data. Once the λ giving the desired bitrate is found, we proceed409

to the next step and perform the bitstream interleaving to obtain the final410

bitstream (Fig. 11).411
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Table 1
Data sets

Image Type Dynamic Size

moffett3 Hyperspectral 16 bits 512 × 512 × 224

jasper1 Hyperspectral 16 bits 512 × 512 × 224

cuprite1 Hyperspectral 16 bits 512 × 512 × 224

CT skull CT 8 bits 256 × 256 × 192

CT wrist CT 8 bits 256 × 256 × 176

MR sag head MR 8 bits 256 × 256 × 56

MR ped chest MR 8 bits 256 × 256 × 64

6 Results412

6.1 Data413

The hyperspectral data subsets originate from the Airborne Visible Infrared414

Imaging Spectrometer (AVIRIS) sensor. This hyperspectral sensor from NASA/JPL415

collects 224 contiguous bands in the range 400 nm to 2500 nm. Each band is416

approximately 10 nm spectral resolution. Depending on the sensor altitude,417

spatial resolution is between 4 and 20 m. We use radiance unprocessed data.418

The original AVIRIS scenes are 614 × 512 × 224 pixels. For the simulations419

here, we crop the data to 512 × 512× 224 starting from the upper left corner420

of the scene. To make comparison easier with other papers, we use well-known421

data sets: particularly the scene 3 of the f970620t01p02 r03 run from AVIRIS422

on Moffett Field, but also scene 1 from the f970403t01p02 r03 run over Jasper423

Ridge and scene 1 from the f970619t01p02 r02 run over Cuprite site. MR and424

CT medical images are also used. The details of all the images are given in425

Table 1.426

Error is given in terms of PSNR, RMSE and maximum error. For AVIRIS427

sets, PSNR (Peak Signal to Noise Ratio) is computed compared to the dynamic428

value of 16 bits: PSNR = 10 log10(2
16−1)2/MSE, MSE being the Mean Square429

Error. RMSE is the Root Mean Square Error. All errors are measured in430

the final reconstructed dataset compared to the original data. Choosing a431

distortion measure suitable to hyperspectral data is not easy matter as shown432

in [33]. The rate-distortion optimization is based on the additive property of433

the distortion measure and optimized for the MSE. Our goal here is to choose434

an acceptable distortion measure for general use on different kinds of volume435

images. The MSE-based distortion measures here are appropriate and popular436

and are selected to facilitate comparisons.437
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Final rate, including all headers and required side information, is given in438

terms of Bit Per Pixel Per Band (bpppb).439

An optional arithmetic coder is included to improve rate performance. The440

coder is coming from [25]. In the context of a reduced complexity algorithm,441

the slight improvement in performance introduced by the arithmetic coder442

does not seem worth the complexity increase. Results with arithmetic coder443

are given for reference. Unless stated otherwise, results in this paper do not444

include the arithmetic coder. Several particularities have to be taken into445

account to preserve the bitstream flexibility. First, contexts of the arithmetic446

coder have to be reset at the beginning of each part to be able to decode447

the bitstream partially. Secondly, the rate recorded during the rate-distortion448

optimization has to be the rate provided by the arithmetic coder.449

6.2 Compression performance450

The raw compression performances of the previously defined 3D-SPIHT-RARS451

(Random Access with Resolution Scalability) are compared with the best up-452

to-date method without taking into account the specific properties available453

for the previously defined algorithm. The reference results are obtained with454

the version 5.0 of Kakadu software [34] using the JPEG 2000 part 2 options:455

wavelet intercomponent transform to obtain a transform similar to the one456

used by our algorithm. PSNR values are similar to the best values published in457

[35]. The results were also confirmed using the latest reference implementation458

of JPEG 2000, the Verification Model (VM) version 9.1. Our results are not459

expected to be better but are here to show that the increase in flexibility does460

not come with a prohibitive cost in performance. It also has to be noted that461

the results presented here for 3D-SPIHT of 3D-SPIHT-RARS do not include462

any entropy coding of the SPIHT sorting output.463

First, coding results are compared with the original SPIHT in Table 2. To464

be able to cope with the memory requirements of the original 3D-SPIHT,465

processing was limited to 256×256×224 data set which correspond to the lower466

right part of the f970620t01p02 r03 run from AVIRIS on Moffett Field (same467

area as in [33]). The source of performance decrease is the separation of the468

wavelet subbands at each bitplane which causes different bits to be kept if the469

bitstream is truncated. Once again, if lossless compression is required, the two470

algorithms, SPIHT and SPIHT-RARS provide exactly the same bits reordered471

(apart from the headers). We can see that the impact on performance remains472

low at high bitrate. The impact of taking into account the non-orthogonality of473

the 9/7 wavelet transform remains very low (within the rate accuracy). Every474

block has a similar structure and contains coefficients from all subbands with475

all weights. Adding weights in the distortion estimation has a much lower476
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Table 2
Impact of the modifications (rate accuracy better than 0.003 bpppb).

1.0 bpppb 0.5 bpppb

Original 3D-SPIHT 75.79 dB 70.05 dB

3D-SPIHT-RARS (no weight) 75.75 dB 69.63 dB

3D-SPIHT-RARS 75.76 dB 69.62 dB

Table 3
Lossless performances (bpppb)

Image JPEG 2000 SPIHT-RARS SPIHT-RARS (with AC)

CT skull 2.93 2.21 2.16

CT wrist 1.78 1.31 1.28

MR sag head 2.30 2.42 2.37

MR ped chest 2.00 1.96 1.94

moffett3 5.14 5.47 5.38

jasper1 5.54 5.83 5.75

cuprite1 5.28 5.62 5.54

impact than in the case of JPEG 2000 where each coding unit (codeblock) has477

a different weight.478

Computational complexity is not easy to measure, but one way to get a rough479

estimation is to measure the time needed for the compression of one image.480

The version of 3D-SPIHT here is a demonstration version and there is a lot of481

room for improvement. The compression time with similar options is 20 s for482

Kakadu v5.0, 600 s for VM 9.1 and 130 s for 3D-SPIHT-RARS. These values483

are given only to show that compression time is reasonable for a demonstration484

implementation and the comparison with the demonstration implementation485

of JPEG 2000, VM9.1 shows that this is the case. The value given here for 3D-486

SPIHT-RARS includes the 30 s necessary to perform the 3D wavelet transform487

with QccPack.488

Table 3 compares the lossless performance of the two algorithms. For both,489

the same integer 5/3 wavelet transform is performed with the same number of490

decompositions in each direction. Performances are quite similar for the MR491

images. SPIHT-RARS outperforms JPEG 2000 on the CT images but JPEG492

2000 gives a lower bitrate for hyperspectral images.493

Tables 4 to 6 compare the lossy performances of the two algorithms. It is494

confirmed that the increase in flexibility of the 3D-SPIHT-RARS algorithm495

does not come with a prohibitive impact on performances. We can observe less496

than 1 dB difference between the two algorithms. A non contextual arithmetic497
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Table 4
PSNR for different rates for Moffett sc3

Rate (bpppb) 2.0 1.0 0.5 0.1

Kakadu v5.0 89.01 82.74 77.63 67.27

3D-SPIHT-RARS 88.18 81.95 76.60 66.39

Table 5
RMSE for different rates for Moffett sc3

Rate (bpppb) 2.0 1.0 0.5 0.1

Kakadu v5.0 2.32 4.78 8.61 28.39

3D-SPIHT-RARS 2.56 5.24 9.69 31.42

Table 6
Maximum error magnitude for different rates for Moffett sc3

Rate (bpppb) 2.0 1.0 0.5 0.1

Kakadu v5.0 24 66 157 1085

3D-SPIHT-RARS 37 80 161 1020

coder applied directly on the 3D-SPIHT-RARS bitstream already reduces this498

difference to 0.4 dB (not used in the presented results).499

6.3 Resolution scalability from a single bitstream500

Different resolutions and different quality levels can be retrieved from one bit-501

stream. Table 7 presents different results on Moffett Field scene 3 changing the502

number of resolutions and bitplanes to decode the bitstream. The compres-503

sion is done only once and the final bitstream is organized in different parts504

corresponding to different resolution and quality. From this single compressed505

bitstream, all these results are obtained changing the decoding parameters.506

Different bit depths and different resolutions are chosen arbitrarily to obtain507

a lower resolution and lower quality image. Distortion measures are provided508

for the lower resolution image as well as the bitrate necessary to transmit or509

store this image.510

For the results presented in this table, similar resolutions are chosen for spec-511

tral and spatial directions but this is not mandatory as illustrated in Figure 12.512

The reference low resolution image is the low frequency subband of the wavelet513

transform up to the desired level. To provide an accurate radiance value, co-514

efficients are scaled properly to compensate gains due to the wavelet filters515

(depending on the resolution level).516

Table 7 shows for example that discarding the 6 lower bitplanes, a half reso-517

lution image can be obtained with a bitrate of 0.203 bpppb and a PSNR of518
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Table 7
Bits read for different parameters and quality for the image moffett3. The compres-
sion is done only once.

Number of non decoded bitplanes: 0

Resolution Full 1/2 1/4 1/8

bpppb read 5.309 1.569 0.247 0.038

PSNR (dB) 106.57 105.58 108.27 114.77

RMSE 0.31 0.34 0.25 0.12

Time (s) 59.43 21.82 7.17 3.54

Number of non decoded bitplanes: 2

Resolution Full 1/2 1/4 1/8

bpppb read 2.857 0.989 0.198 0.033

PSNR (dB) 91.89 99.45 104.43 109.54

RMSE 1.67 0.70 0.39 0.22

Time (s) 42.33 18.03 6.86 3.62

Number of non decoded bitplanes: 4

Resolution Full 1/2 1/4 1/8

bpppb read 1.016 0.475 0.132 0.027

PSNR (dB) 82.03 90.16 97.99 103.52

RMSE 5.18 2.03 0.82 0.44

Time (s) 18.18 10.05 5.34 3.45

80 dB (for this resolution).519

In Figure 12, we can see different hyperspectral cubes extracted from the same520

bitstream with different spatial and spectral resolutions. The face of the cube521

is a color composition from different subbands. The spectral bands chosen for522

the color composition in the sub-resolution cube correspond to those of the523

original cube. Some slight differences from the original cube can be observed524

on the sub-resolution one, due to weighted averages from wavelet transform525

filtering spanning contiguous bands.526

6.4 ROI coding and selected decoding527

The main interest of the present algorithm is in its flexibility. The bitstream528

obtained in the resolution scalable mode can be decoded at variable spectral529
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Number of non decoded bitplanes: 6

Resolution Full 1/2 1/4 1/8

bpppb read 0.327 0.203 0.079 0.020

PSNR (dB) 74.02 80.11 87.61 95.68

RMSE 13.05 6.47 2.73 1.08

Time (s) 7.70 6.14 4.40 3.36

Number of non decoded bitplanes: 8

Resolution Full 1/2 1/4 1/8

bpppb read 0.104 0.077 0.039 0.013

PSNR (dB) 66.72 70.77 76.74 84.34

RMSE 30.23 18.97 9.53 3.98

Time (s) 4.51 4.26 3.68 3.26

Number of non decoded bitplanes: 10

Resolution Full 1/2 1/4 1/8

bpppb read 0.030 0.025 0.016 0.007

PSNR (dB) 59.50 62.39 66.81 73.04

RMSE 69.41 49.76 29.92 14.60

Time (s) 3.47 3.45 3.29 3.16

(a)

(b)

(c)

(d)

Fig. 12. Example of hyperspectral cube with different spectral and spatial resolution
decoded from the same bitstream. (a) is the original hyperspectral cube. (b) is 1/4
for spectral resolution and 1/4 for spatial resolution. (c) is full spectral resolution
and 1/4 spatial resolution. (d) is full spatial resolution and 1/8 spectral resolution.

and spatial resolutions for each data block. This is done reading, or transmit-530

ting, a minimum number of bits. Any area of the image can be decoded up to531

any spatial resolution, any spectral resolution and any bitplane. This property532
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(b) spectrum from 1

(c) spectrum from 2

1

2 3

4

(a)

(d) spectrum from 3

(e) spectrum from 4

Fig. 13. Example of a decompressed image with different spatial and spectral res-
olution for different areas. Background (area 1) is with low spatial resolution and
low spectral resolution as is can be seen on the spectrum (b). Area 2 has low spatial
resolution and highspectral resolution (c), area 3 has high spatial resolution but low
spectral resolution (d). Finally, area 4 has both high spectral and spatial resolu-
tions. This decompressed image was obtained from a generic bitstream, reading the
minimum amount of bits.

is illustrated on Figure 13. Most of the image background (area 1) is decoded533

at low spatial and spectral resolutions, dramatically reducing the amount of534

bits. Some specific areas are more detailled and, offer the full spectral resolu-535

tion (area 2), the full spatial resolution (area 3) or both (area 4). The image536

from Figure 13 was obtained reading only 16907 bits from the original 311598537

bits bitstream.538

The region of interest can also be selected during the encoding by adjusting539

the number of bitplanes to be encoded for a specific block. In the context540

of on-board processing, it would enable further reduction of the bitrate. The541

present encoder provides all these capabilities. For example, an external clouds542

detection loop could be added to adjust the compression paremeter to reduce543

the resolution when clouds are detected. This would decrease the bitrate on544

these parts.545

7 Conclusion546

An adaptation of the 3D-SPIHT algorithms is presented. The 3D-SPIHT-547

RARS algorithm enables resolution scalability for spatial and spectral dimen-548

sions independently. Coding different areas of the image separately enables549

random access and region of interest coding with a reduction in memory usage550

during the compression. Thanks to the rate-distortion optimization between551
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the different areas, all this is done without sacrificing compression capabilities.552

All these features seem also possible with the JPEG 2000 standard. However,553

implementation providing multiresolution transforms is very recent and does554

not provide yet all the flexibility proposed here, particularly on the spectral555

direction.556

The use of an arithmetic coder slightly increases compression performance,557

but at the cost of an increase in the complexity. It has to be highlighted that558

the 3D-SPIHT-RARS algorithm does not need to rely on arithmetic coding559

to obtain competitive results to JPEG2000.560
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Initialization step:

• Initialize t to the number of bitplanes

• LSP = ∅

• LIP : all the coefficients without any parents (coefficients from the lowest fre-
quency subband)

• LIS : all coefficients from the LIP with descendants

Sorting pass : For each entry (i, j, k) of the LIP

• Output St(i, j, k)

• If St(i, j, k) = 1, move (i, j, k) in LSP and output the sign of ci,j,k

For each entry (i, j, k) of the LIS

• If the entry is type A

· Output St(D(i, j, k))
· If St(D(i, j, k)) = 1 then

For all (i′, j′, k′) ∈ O(i, j, k) : output St(i
′, j′, k′); If St(i

′, j′, k′) = 1, add
(i′, j′, k′) to the LSP and output the sign of ci′,j′,k′ else, add (i′, j′, k′) to
the end of the LIP
If L(i, j, k) 6= ∅, move (i, j, k) to the end of the LIS as a type B entry
Else, remove (i, j, k) from the LIS

• If the entry is type B

· Output St(L(i, j, k))
· If St(L(i, j, k)) = 1

Add all the (i′, j′, k′) ∈ O(i, j, k) to the end of the LIS as a type A entry
Remove (i, j, k) from the LIS

Refinement pass:

• For all entries (i, j, k) of the LSP, except those included in the last sorting pass,
output the tth most significant bit of ci,j,k

Decrement t and return to the sorting pass.
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Resolution scalable 3D SPIHT
Initialization step:

• Initialize t to the number of bitplanes

• LSP0 = ∅

• LIP0 : all the coefficients without any parents (the 8 root coefficients of the block)

• LIS0 : all coefficients from the LIP0 with descendants (7 coefficients as only one
has no descendant)

• For r 6= 0, LSPr = LIPr = LISr = ∅

For each r from 0 to maximum resolution
For each t from the highest bitplane to 0 (bitplanes)
Sorting pass : For each entry (i, j, k) of the LIPr which had been added at a threshold
strictly greater to the current t

• Output St(i, j, k)

• If St(i, j, k) = 1, move (i, j, k) to LSPr and output the sign of ci,j,k (1)

For each entry (i, j, k) of the LISr which had been added at a threshold greater
or equal to the current t

• If the entry is type A

· Output St(D(i, j, k))
· If St(D(i, j, k)) = 1 then

For all (i′, j′, k′) ∈ O(i, j, k) : output St(i
′, j′, k′); If St(i

′, j′, k′) = 1, add
(i′, j′, k′) to the LSPrd

and output the sign of ci′,j′,k′ else, add (i′, j′, k′) to
the end of the LIPrd

(2)
If L(i, j, k) 6= ∅, move (i, j, k) to the LISr as a type B entry
Else, remove (i, j, k) from the LISr

• If the entry is type B

· Output St(L(i, j, k))
· If St(L(i, j, k)) = 1

Add all the (i′, j′, k′) ∈ O(i, j, k) to the LISrd
as a type A entry

Remove (i, j, k) from the LISr

Refinement pass:

• For all entries (i, j, k) of the LSPr which had been added at a threshold
strictly greater than the current t : Output the tth most significant bit of
ci,j,k
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