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ABSTRACT

We propose a new low-complexity entropy-coding method to be used for coding waveform signals. It is based on the

combination of two schemes: (1) an alphabet partitioning method to reduce the complexity of the entropy-coding

process; (2) a new recursive set partitioning entropy-coding process that achieves rates smaller than �rst order

entropy even with fast Hu�man adaptive codecs. Numerical results with its application for lossy and lossless image

compression show the e�cacy of the new method, comparable to the best known methods.

Keywords: entropy coding, lossless compression, image coding

1 INTRODUCTION

In practical applications of waveform coding, the common rule is that sources have characteristics that keep changing

dramatically. These changes can be easy to identify, like activity in voice coding, or more subtle, like textures in

images, or instrument timbre in music. The simplest coding methods are known to be ideal under conditions like

stationarity, which may be too far from reality. On the other hand, much is known about the existence of methods for

complex sources (e.g., nonstationary), but here the problem lies in the coding computational complexity. Frequently

an exponential growth in the complexity makes any implementation impractical.

So, an important problem for waveform coding is to devise e�cient coding schemes that are highly adaptive,

yielding good results for whatever are the source characteristics at that moment, and which at the same time have

complexity consistent with the type of application (e.g., real-time). Actually, some of the most e�ective algorithms

appearing now in the literature follow this line by adding to the coding algorithms intelligent rules for detecting

patterns in the source or some form of source state. However, those solutions are usually constrained to a single type

of source.

In this paper we consider the problem in a more general perspective, and propose a scheme for combining

complexity reduction and e�cient entropy-coding based on an assumption common in several types of sources (usually

waveforms after some transformation or prediction): the clustering of activity, i.e., the source statistics should be

consistent inside regions in a proper signal space. For example, for subband transformed audio this space has both

time and frequency components, and only noise would use the whole audible spectrum all the time. \Normal" sources

use only some parts of the spectrum during some lengths of time.
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The �rst part of the paper presents an analysis of the alphabet partitioning method, which is used to reduce the

complexity of the entropy-coding process. Then we present a new recursive set partitioning entropy-coding process

that e�ciently achieves rates smaller than �rst order entropy even with fast Hu�man adaptive codecs. Finally,

numerical results show the e�cacy of the new method for lossy and lossless image compression. Even though the

new approach can lead to both better compression and coding/decoding speed, our emphasis here is on speed.

Notwithstanding, the results for image compression are among the best in the literature.

2 THE ALPHABET PARTITIONING METHOD

In practical waveform coding applications (e.g., image, video, audio) the data to be entropy-coded|obtained after

an adequate signal transformation (e.g., linear prediction, DCT, wavelet, pyramids, etc.) and quantization|has a

distribution that is simultaneously highly peaked and very long tailed. Typically, the values are concentrated near

zero, but there is also a signi�cant number of values with very large magnitude. This means that large compression

ratios are possible, but the coding process must deal with a very large alphabet. This coding problem occurs for

both lossy and lossless compression.

There are many practical di�culties when the data alphabet is large, ranging from the time required to design

and implement the code, to the amount of memory necessary to store the codebooks or gather the data statistics

(when the coding method is adaptive). These problems get much worse if we try to exploit the statistical dependence

left between the source samples by, for example, coding several symbols together or designing conditional codes.

Several ad hoc methods have been devised to deal with the problem caused by large alphabets. For instance,

a popular method uses an extra \over
ow" symbol to indicate data that is to be coded with a special method.

However, these methods are not very e�cient and have limited application.

Here we analyze a method to reduce the coding complexity when the source alphabet is large, based on the

following strategy:

� the source alphabet is partitioned into a relatively small number of sets;

� each symbol is coded in two steps: �rst the number of the set in which the symbol belongs (called set number)

is coded; afterwards the number of that particular source symbol inside that set (the set index) is coded;

� when coding the pair (set number, set index) the set number is entropy-coded with a powerful and complex

method, while the set index is coded with a very simple and fast method (which can be simply the binary

representation of that index).

Figure 1 shows a diagram of such scheme when the set indexes are left uncoded. Note that that even though we

frequently mention a waveform source, we are always implicitly assuming that the data source to be coded is the

output of a stage where the signal is transformed and quantized.

The advantage of alphabet partitioning comes from the fact that it is normally possible to �nd partitions that

allow large reductions in the coding complexity with a very small loss in the compression e�ciency. Methods that

�t in this general strategy had already been used in several compression schemes. For example, it is used inside

the popular compression program gzip, and also in the JPEG still picture lossless compression standard,2 in its

variable-length-integer (VLI) representation. It has been used for complexity reduction in the context de�nitions for

arithmetic coding,3 and also in the arithmetic coding of waveforms.5 However, it was not possible to identify who

�rst proposed it, nor �nd any general description or the analysis of its performance, or even know if those who had

been using special versions of it knew about its full power and generality.

Here we present an analysis of the trade-o� between the coding/decoding complexity and the compression e�-

ciency, and also propose and test an algorithm to �nd the best partitions for a given source distribution. With the

complexity reduction achieved by the alphabet partitioning method, we show that it is feasible to use more power-

ful entropy-coding methods, and to exploit statistical dependencies which cannot be exploited by linear prediction

methods. Numerical results make clear the advantages of the alphabet partitioning for practical problems
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Figure 1: A system for wavelet compression using the alphabet partitioning method for complexity reduction.

Another practical advantage is related to error protection. An error in a variable-length code can have disastrous

consequences. With the alphabet partitioning scheme the set-index data can be left uncoded, and an error in that

data has very limited consequences (i.e., a single bit error will change only one reconstructed source sample).

3 ANALYSIS OF THE ALPHABET PARTITIONING

Let us assume an i.i.d. source with M symbols, and where the symbol i occurs with probability pi. Its entropy is

H =

MX
i=1

pi log2

�
1

pi

�
: (1)

We partition the source symbols into nonempty sets Sn, n = 1; 2; : : :; N , and denote the number of elements in

Sn by Mn.

Let us consider an ideal entropy-coding method which �rst codes the set in which the source symbol belongs

(viz., the set number), and later codes the symbol conditioned that it belongs to that set (viz., the set index). The

coding rate, here equal to the combined entropy, is

H1 =
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Pn log2

�
1

Pn

�
+

NX
n=1

Pn
X
i2Sn

pi

Pn
log2

�
Pn

pi

�
(2)

=

NX
n=1

Pn log2

�
1

Pn

�
+

NX
n=1

X
i2Sn

pi log2
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Pn

pi

�
; (3)

where Pn =
P
i2Sn

pi is the probability that a data symbol belongs to set n.

The �rst term in (3) is the rate to code the set, and the second term is the rate to conditionally code the symbol

index in the set. Substitution of Pn into (3) proves that H1 = H, meaning that the combined rate is equal to the

source entropy and that there is no loss in separating the coding process in two steps. This is intuitively reasonable,

since the pair (set number, set index) is related to the symbol number by a one-to-one mapping.

To reduce the complexity we want to code all indexes of the set Sn with the same number of bits, log2Mn. If

Mn is a power of two, then the set indexes can be coded using simply their binary representation. When arithmetic

coding8, 9 is used we still can have complexity reduction even ifMn is not a power of two, because it is easier to code

assuming an uniform distribution.

Of course, there is a penalty for assigning log2Mn bits for every symbol in the set Sn, as the optimal number of

bits to be used by symbol i inside set Sn is log2(Pn=pi). To evaluate the loss we can calculate the combined rate of

the simpli�ed method, which is the entropy of the set numbers plus an average of the �xed rates used to code the



set indexes:

H2 =
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From (3) and (4) it follows that the di�erence between H2 and H1 is

�H = H2 �H1 =

NX
n=1

X
i2Sn

�
pi log2Mn � pi log2

�
Pn

pi

��
=
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X
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pi log2

�
Mnpi

Pn

�
: (5)

The analysis of equation (5) lead us to the conclusion that the relative loss �H=H can be made very small if we

partition the alphabets in sets such that

1. Pn log2Mn=H is very small, i.e., the relative contribution of Sn to H is very small.

2. pi � Pn=Mn; 8i 2 Sn, i.e., the distribution inside Sn is approximately uniform.

The �rst condition exploits the fact that some symbols can occur with very low probability|a property that has

been used by several other methods. The second condition, on the other hand, can occur even for the most probable

symbols. What makes the alphabet partitioning scheme really e�ective is the simultaneous exploitation of these two

very di�erent conditions.

Note that the analysis above can be easily extended to conditional entropy by simply replacing the probabilities

with conditional probabilities.

4 OPTIMAL ALPHABET PARTITIONING ALGORITHM

In the last section we derived the conditions necessary to have good alphabet partitions. It is still necessary to de�ne

an e�cient method to construct the optimal partitions. The objective is to minimize the complexity maintaining a

relatively small loss in compression e�ciency. Thus, we can set the optimization problem as: minimize the number

of sets N , subject to �H � � H, where � is a small number (e.g., 0.01).

We can also add other practical constraints. For instance, if the set indexes are to be left uncoded, then we must

require that the number of set elements, Mn; n = 1; 2; : : : ; N , be a power of two. When using an arithmetic code it

may not be possible to separate the data streams with the set numbers and the set index, and the constraint above

is not necessary.

The alphabet partitioning problem is a combinatorial problem. The optimization methods to solve that type of

problem are quite complex and require a large computational e�ort to �nd the optimal solution. Another alternative

is to use some heuristic methods, which have been successfully employed to solve combinatorial problems. They can

�nd, in the majority of the cases, solutions that are very near the optimum. The disadvantage is that the user may

not know with certainty the quality of the solution, but this may not be a problem for engineering applications.

So, we propose the following fast heuristic algorithm that can be used \on-the-
y" to �nd good partitions.

1. Set �H = 0; choose N relatively large and the alphabet partitions Sn using an empirical rule (see comment

below); choose the maximum relative loss �.

2. For every pair of sets with the same size, join the sets, calculate the entropy variation �H, and select the

smallest variation �H�.

3. If �H� +�H > �H then stop.

4. Otherwise

(a) Set N  N � 1, �H �H + �H�

(b) replace the sets corresponding to �H� by their union



magnitude amplitude sign magnitude-di�erence

set (MS) intervals bit bits

0 [0] no 0

1 [{1], [1] yes 0

2 [{2], [2] yes 0

3 [{3], [3] yes 0

3 [{4], [4] yes 0

4 [{6,{5], [5,6] yes 1

5 [{8,{7], [7,8] yes 1

6 [{12,{9], [9,10] yes 2

7 [{16,{13], [13,16] yes 2
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Table 1: Example of magnitude-sets to be used as initial solution in the alphabet-partitioning algorithm.

(c) go to step 2.

This algorithm belongs to a class of heuristics called \greedy," because its decisions do not take into account the

future alternatives, and when a decision is chosen it cannot be undone.

In step 1 of the algorithm an initial solution is required. With some knowledge of the source and some experience

with the algorithm it is easy to identify good initial solutions. For instance, with transformed waveforms we commonly

have positive and negative values with the same probability. Thus, as shown by equation (5), there is absolutely no

loss in joining the positive and negative values in the same sets. This is equivalent to say that there is no gain in

attempting to entropy-code the sign bits. Furthermore, the di�erence in probabilities tend to get smaller for larger

values. For example, the values 2 and 5 can have very di�erent probabilities, while the values 82 and 85 should have

practically the same probability, and thus can be put together in the same set.

An example of a good initial solution for image sources is shown in Table 1. In that example the value is

decomposed in three parts: a magnitude set, which corresponds to the set number, and a group of sign plus magnitude-

di�erence bits required to code the set index.

5 COMBINATION OF ALPHABET PARTITIONING WITH SAMPLE SET PARTITIONING

As explained above, with the alphabet partitioning scheme we only need to entropy code the set numbers. We

assume that an alphabet partition was previously chosen and will not change during coding. So, hereafter when we

say entropy coding, or mention source symbols, source samples, etc., we are always referring to the set numbers,

which form a relatively small alphabet (e.g., 16 symbols or letters). Hereafter we use the term source symbol to

indicate a general element that is an alphabet partition number. For example, if the number of sets is 16, then the

new source alphabet can be f0, 1, 2,: : : , 15g. On the other hand, we use the term source sample or letter to indicate

the actual value of the partition number input to the encoder. In the last sections we discussed a partitioning scheme

for alphabet symbols. Here we propose another partitioning method, but it applies to sets of source samples.

With the source alphabet reduced so dramatically by the alphabet partitioning method, we can try to exploit

the dependence between several adjacent samples, and achieve compression ratios larger than that of the zero order

entropy. In fact, lossy compression of images or video without an arithmetic encoder can only be e�cient this way,

as it is necessary to achieve rates like 0.1 bit/sample.

A straightforward solution is to aggregate several symbols (a technique called source extension) to form again

a large alphabet. The extension order is constrained by complexity considerations, and even though we may have

the same problems originally found with large alphabets, here the coding process is more e�cient, as each extension

symbol corresponds to several original source symbols, and it can yield rates below the zero-order entropy.



An equivalent approach is to use conditional coding. To keep the discussion simple (and include, for instance,

Hu�man codes) we discuss mostly the extension approach, but both are somewhat equivalent, and in our coding

methods they are used together.

A practical problem when implementing the source extension is to �nd the number of symbols to be aggregated.

The higher this number the better, but complexity limits this process, as the number of required extended-alphabet

symbols increases exponentially. This problem is complicated by the fact that real applications (e.g., image, video,

audio) correspond to sources with statistical properties that change drastically. A simple implementation of the

alphabet extension must necessarily consider a worst-case scenario, which is surely not the best for the most common

situations.

Here we propose adaptive schemes that address this problem. The objective is to separate the source letters

according to their statistical distribution, and code each group accordingly. It is based on the fact that letters

with the same distribution tend to occur in \clusters," which depend on the type of source. For example, with

images we have two-dimensional regions. For audio it can represent a time range, or a two-dimensional region in a

time-frequency range.

To simplify the exposition of the new coding method we begin with four examples, and then present a very general

scheme, which can be extended and modi�ed in many forms, and includes these four examples as special cases.

Example 1: Groups of 4� 4 Image Pixels

In an image coding example, let us suppose we want to code groups of 4� 4 pixels, each one of which is a 16-letter

source (the set numbers). We assume that the source letters are sorted according to their probabilities, with \0"

representing the most common symbol, \1" the second most common, etc.

We may consider using a �rst extension, and code groups of two pixels with a 256-symbol alphabet, which is a

reasonable size. If we decide to use a second or third extension, we need alphabets with 4,096 or 65,536 symbols,

respectively, which may be too large. However, the vast majority of the extension symbols are expected to be all-\0",

leading us to consider if it is possible to exploit this fact to use high order extensions, and still have alphabets with

a small number of source symbols.

To achieve that goal we propose to code the data in that 4� 4 group with the following algorithm:

1. Find the maximum value vm in the group of 4� 4 pixels. (Here the values correspond to a set number.)

2. Entropy-code vm; if vm = 0 stop.

3. if vm is small use an r-order source extension to entropy-code the 16=r groups of r pixels using a (vm+1)
r-symbol

alphabet; otherwise entropy-code the 16 pixel values with a (vm + 1)-symbol alphabet.

4. Stop.

The stop conditions are de�ned at the moment that all values can be known by the decoder. For instance, if the

maximum vm is zero then we can conclude that all 16 pixel values are zero. So in step 2 the encoder stops, but we

should note that the decoder has to set the corresponding values (set numbers) to zero.

This simple scheme is very e�ective because it allows the proper adaptive selection of source extension and

alphabet-sizes, according to the value distribution in that part of the image.

Indeed, in practice the most common case should be vm = 0, followed by vm = 1, vm = 2, etc. Thus, if vm = 1 or

vm = 2 we can, for example, choose in step 3 of the algorithm r = 4, and entropy code groups of 2� 2 pixels using

alphabets with 16 and 81 symbols, respectively. Similarly, if vm = 4 or vm = 5 we can choose r = 2, and entropy

code groups of 2� 1 pixels using alphabets with respectively 16 and 25 symbols. The choice of the best extensions

depends on several practical factors. For example, adaptive encoders with large alphabets take a long time to gather

reliable estimates of the source probabilities, and thus may not be suited when the image is small.

This entropy coding scheme has the following advantages.



1. In the most frequent situation the pixels in the 4�4 group are entropy coded with high-order extensions, which

allows fully exploiting the statistical dependence between those adjacent pixels.

2. With the extensions it is possible to get very good results with simple and fast codes, which may have codewords

with an integer number of bits. Indeed, in this example it is possible to obtain rates as low as 1/16 bit/symbol

even with Hu�man codes.

3. Because di�erent alphabets are used for di�erent values of vm, this corresponds to entropy-coding the values

conditioned to vm, which is a measure of the activity in that 4� 4 region. This property is the same employed

by classifying encoders.

The algorithm cannot be arbitrarily extended to code any group of n�n pixels because we must also consider the

overhead incurred by coding the maximum value vm (except when vm = 0). Here the region size (4� 4) was chosen

as a compromise between that overhead versus the gains obtained with extension and by exploiting the expected

similarity inside the group. For a larger group (e.g., 8�8) the relative overhead (per pixel) may become insigni�cant,

but the coding process is less adaptive. The opposite happens when the group is small (e.g., 2� 2).

The example below shows a modi�cation that can be used for coding sets with a small number of samples.

Example 2: Groups of 2� 2 Image Pixels

Assuming the same conditions as in the example above, let us consider a more sophisticated scheme to code groups

of 2 � 2 pixels. Note that we still may not be able to use source extension directly, as it yields an alphabet with

65,536 symbols.

When the set of samples (pixels) is small, we propose a coding scheme that is similar to the algorithm proposed in

the previous example, but that reduces the overhead associated with coding the maximumvalues. The new proposed

algorithm is

1. Find the maximum value vm in the group of 2� 2 pixels.

2. Entropy-code vm; if vm = 0 stop.

3. Create a binary \mask" � with 4 bits, each bit corresponding to a pixel in the 2� 2 group. Each bit is set to

1 if the pixel value is equal to vm and otherwise set to 0.

4. Entropy-code � using a 15-symbol alphabet (the case � = 0 never occurs). If � = 15 (binary [1111]) or vm = 1

stop;

5. Let r be the number of pixels with values smaller than vm. If vrm is su�ciently small then aggregate the r

symbols and entropy-code them with a vrm-symbol alphabet. Otherwise entropy-code each of the r values with

a vm-symbol alphabet.

6. Stop.

Again, the stop conditions are de�ned by the knowledge available to the decoder. Here, for example, when � = 15

the decoder sets the four pixel values to vm.

The overhead associated with coding the maximum value vm is minimized by the use of the binary mask because

now only the pixel values smaller than vm need to be entropy-coded.

Again, the fact that di�erent alphabets have to be used in di�erent cases (values of vm and �) yields entropy-

coding strongly conditioned to the data of the adjacent pixels. The condition above is an integral part of the method,

but other extensions may also be advantageous. For instance, � is always coded using a 15-symbol alphabet, but it

may be better to code it conditioned to vm.

Numerical results show that the compression does not degrade much if we do not aggregate the symbols in step 5.

At the same time they show that the overhead of entropy-coding vm in step 2 can be still further reduced. In the

next example we present a simple solution to this problem.



Example 3: Recursive Coding of Groups of 2n � 2n Image Pixels

Here we use basically the same algorithm proposed to code the group of 2� 2 pixels. The di�erence is that coding

is now done in an hierarchical and recursive manner. First the algorithm is used to code the maximum value in the

group of 2n � 2n pixels. Then a 4-bit mask is de�ned to indicate if the maximum in each of the four subgroups of

2n�1�2n�1 pixels is equal to the maximum in the 2n�2n group. The mask is entropy-coded and later the maximum

values in the four subgroups of 2n�1 � 2n�1 pixels are also coded. This subdivision process is applied to code the

values in gradually smaller blocks, until all the 2� 2 subgroups are coded.

In other words, we use for the groups of 2n � 2n pixels the same algorithm proposed to code the values in the

2�2 groups. The di�erence is that when n > 1 we code the maximum values in subgroups, and when n = 1 we code

the actual pixel values.

Among the advantages of this extension of the coding method we can cite:

� it allows exploiting the statistical similarity in larger regions;

� extension alphabets with a small number of elements are automatically used in large regions where the values

are uniformly small, extending the desired adaptive alphabet-selection;

� when there are large regions that have value 0, a single symbol can give information about a large number of

pixels, allowing compression to rates much smaller than 1 bit/pixel, even when Hu�man codes are used.

Example 4: Spatial-Orientation Trees

The common feature in the previous examples is that basically we

1. de�ne some sets of source samples,

2. entropy code the maximum value in each of those sets,

3. partition each set in a certain number of subsets,

4. possibly entropy code a binary mask indicating where is the maximum value to be found in the subset,

5. use the same basic algorithm to code the maximum in the subsets, until all single-sample values are coded.

Thus we have a great deal of 
exibility in choosing the sets of samples, and implementing the coding method.

When the image is transformed using a wavelet transformation to construct a multiresolution pyramid,6 there

is a statistical dependence between the transformed pixel magnitudes following the pixels in di�erent levels of the

pyramid, but corresponding to the same spatial location. This property is exploited in another set-partitioning

scheme.11

The same sets, and set partitioning rules de�ned in ref. 11 can be used in this new method to entropy-code

wavelet-transformed images. A main di�erence between the method presented in ref. 11 and the method proposed

here is that the �rst was designed for embedded coding, while here the methods are directly applied to an already

quantized transformed image.

General Scheme

A more general coding scheme, that includes the examples above, is:

1. Order the source symbols according to their probabilities, with \0" representing the most common symbol, \1"

the second most common, etc.

2. Partition the source samples into a certain number of sets. (Here we refer to the samples put out by the source,

the sets can be de�ned by image regions, a time range, etc.)

3. Create a list with the initial sets, �nd the maximum sample-value vm inside those sets and entropy-code those

numbers.



4. For each set with vm > 0 do

(a) remove the set from the list and divide it into n subsets;

(b) entropy-code a binary \mask" with n bits (one for each subset) such that a bit is set to 1 if the maximum

in that subset, vmi is equal to vm and otherwise set to 0;

(c) if vm > 1 then entropy-code every vmi < vm, possibly aggregating them to create the proper source

extensions;

(d) add to the list of sets each subset with more than one element and with vmi > 0.

5. If the set list is empty then stop; otherwise go to step 4.

Note that there is a great deal of freedom in the choice of the rules to partition the sets, the number of sets,

the scheme to be used for entropy-coding the di�erent type of data, etc. For instance, the binary \masks" were

proposed to the cases when the number of subsets is small. However, when due to practical reasons, it is not possible

to implement the recursive scheme, a direct implementation, like the one described in the �rst example can be

employed. Also, in step 1 it is not always necessary to have the symbols strictly sorted. It may su�ce to have

the symbols partially sorted, according to some expected probabilities. (This avoids the e�ort of estimating the

probabilities before or while coding.)

6 NUMERICAL RESULTS

Alphabet Partitioning

Figure 2 shows how the individual contributions to total rate of the entropy of the set numbers and the rate of the

set indexes change as the number of sets N is reduced by the algorithm to �nd good partitions. The source used

was a 12 bpp CT (tomography) medical image which was processed using the S+P transform,12 which uses a small

number of taps with rational values to produce integer transform coe�cients without need for truncation.

Note that the entropy of the set numbers decreases as the number of sets is reduced, while the set index rate

increases as more elements are added to the sets. The total rate given by the encoder is the sum of these two

numbers. For large values of N (number of sets nearly equal to the number of source symbols) we would have the

set number entropy equal to the source entropy, and the set index rate equal to zero. In the example of Figure 2 this

would occur for N � 214, and thus is not shown in the �gure.

The important observation is that the sum is practically constant, and only increases notably when N < 10.

Figure 3 shows the relative loss as a function of N . Note that we could choose for example N = 11 and have less

than 2% relative loss. In conclusion, we initially had an alphabet with 214 symbols, and have shown that it can be

e�ciently entropy-coded with a 11 symbol code, with only 2% compression loss.

Table 2 shows the results obtained with two medical images, but using the same partitions of the source alphabet.

The two images have quite di�erent activity levels. Nevertheless, the same partitioning scheme worked well for both.

This shows that the partition choice is quite robust, i.e., we can choose one that can be e�ective for a wide range of

similar sources, like medical images, audio, etc.

The use of the alphabet partitioning scheme with another entropy-coding method for lossless image compression,

with several numerical results is presented in ref. 12. An example of those results is shown in Table 3, using the same

medical images of Table 2. Note that the alphabet-partitioning permitted using quite sophisticated methods, which

yield rates well below the zero order entropy, even when fast Hu�man encoders are used.

Sample Set Partitioning

In all image compression tests we used a single alphabet-partitioning scheme, which is shown in Table 4. The images

used in the tests were the 512x512 8-bit monochrome Lena, Barbara, and Goldhill images. No training is required
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number of set N (data source: transformed 12bpp medical image).

5 10 15 20 25 30

0

2

4

6

8

-

6

N

�H

H
(%)

bbbbbbbbbbbbbbb
b

b

b
b

b

b

b

Figure 3: Relative loss in compression due to the reduction of the number of sets N .

direct method 13 sets 23 sets

values entropy set number set index total set number set index total

entropy rate entropy rate

image 1 � 2
12

3.59 2.29 1.35 3.63 2.60 1.00 3.60

image 2 � 2
13

5.94 2.85 3.16 6.01 3.56 2.42 5.98

Table 2: Example of the rates (bpp) obtained with the alphabet partitioning method for lossless compression of

medical images.



image entropy-coding method

arithmetic Hu�man

1 2.80 2.89

2 5.26 5.30

Table 3: Lossless compression rates (bpp) obtained with an e�cient entropy-coding method that uses the alphabet

partitioning method complexity reduction (same images used in Table 2).

magnitude amplitude sign magnitude-di�erence

set (MS) intervals bit bits

0 [0] no 0

1 [{1], [1] yes 0

2 [{2], [2] yes 0

3 [{3], [3] yes 0

4 [{5,{4], [4,5] yes 1

5 [{7,{6], [6,7] yes 1

6 [{11,{8], [8,11] yes 2

7 [{15,{12], [12,15] yes 2

8 [{23,{16], [16,23] yes 3

9 [{31,{24], [24,31] yes 3

10 [{47,{32], [32,47] yes 4

11 [{63,{48], [48,63] yes 4

12 [{127,{64], [64,127] yes 6

13 [{255,{128], [128,255] yes 7

14 [{511,{256], [256,511] yes 8

15 [{1023,{512], [512,1023] yes 9

.

.

.

.

.

.

.

.

.

.

.

.

Table 4: De�nition of the magnitude-sets used in the new image compression method.

in any of the tests. The software implementation is a full image coder and decoder, so that cited bit rates are scaled

values of compressed �le sizes.

The sample-set partitioning entropy-coding method was applied to images processed with the wavelet transform6

and also the discrete cosine transform, each properly quantized (uniform quantization). The methods corresponding

to examples 3 and 4 of Section 5 were implemented, using only Hu�man codes for the data that require entropy-

coding. Table 5 shows the combination of transforms and set partitioning schemes used for the tests, and their

corresponding names.

Note that the methods that do not try to exploit the statistical dependence between subbands (called QT) yield

results very similar to the methods that try (WV), using spatial orientation trees. Thus, in a parallel implementation,

this allows e�ciently coding the subbands independently, or spatial orientation trees independently.

The results for lossy compression are shown in Table 6. The wavelet-based are very similar to those obtained

with the SPIHT12 embedded coding method, but the best SPIHT results were obtained with an arithmetic encoder.

The execution speed is similar to that of binary-uncoded SPIHT.

Table 7 shows the results for lossless compression. The best results were obtained with the method called LSS,

which employs basically the scheme of example 3, but depending on the data it may not use a mask for all partitioned

sets.

Those results are only slightly larger that those obtained with the best known lossless image compression methods.

However, the important fact here is that the methods were equally e�cient for both lossy and lossless compression,



Method Image transform Sample-set partitioning Entropy coding

WV-9/7 wavelet pyramid - 9/7 tap �lters
14

example 4 adaptive Hu�man

WV-10/18 wavelet pyramid - 10/18 tap �lters
14

example 4 adaptive Hu�man

QT-10/18 wavelet pyramid - 10/18 tap �lters
14

example 3 adaptive Hu�man

QT-S+P S+P pyramid
12

(lossless) example 3 adaptive Hu�man

WV-S+P S+P pyramid
12

(lossless) example 4 adaptive Hu�man

LSS S+P pyramid
12

(lossless) similar to ex. 3 adaptive Hu�man

DCT-8 8� 8 discrete cosine example 4 adaptive Hu�man

DCT-16 16� 16 discrete cosine example 4 adaptive Hu�man

Table 5: Methods implemented to test the proposed coding schemes.

Image Rate Coding Method

(bpp) DCT-8 DCT-16 QT-10/18 WV-9/7 WV-10/18

Lena 0.25 32.51 33.46 34.16 34.10 34.25

0.50 36.18 36.82 37.23 37.21 37.30

0.75 38.27 38.70 39.01 39.00 39.04

1.00 39.81 40.13 40.38 40.38 40.45

Barbara 0.25 27.36 28.93 28.73 28.45 28.67

0.50 31.58 32.98 32.87 32.25 32.74

0.75 34.67 35.89 35.86 35.20 35.77

1.00 37.09 38.13 38.16 37.54 38.09

Goldhill 0.25 29.89 30.41 30.50 30.53 30.60

0.50 32.69 33.11 33.17 33.13 33.17

0.75 34.64 34.98 35.08 34.94 35.13

1.00 36.28 36.56 36.67 36.53 36.67

Table 6: Peak signal to noise ratios (PSNR, in dB) obtained with entropy-coding methods that use the alphabet and

sample-set partitioning scheme.

covering a very wide range of bit rates (e.g., from 0.25 to 4 bpp), and using only fast Hu�man codes.

7 CONCLUSIONS

We proposed two new methods for e�cient compression of waveform sources: (a) an alphabet partitioning scheme

that allows dramatic reduction in the complexity of coding those sources; and (b) a new recursive set-partitioning

entropy-coding method for blocks of samples which is shown to be as e�cient as the best known methods.

Method Lena Barbara Goldhill

WV-S+P 4.28 4.65 4.83

QT-S+P 4.27 4.63 4.82

LSS 4.25 4.61 4.81

Table 7: Bit rates (bpp) for lossless recovery when the proposed entropy-coding methods were applied to the S+P

lossless multiresolution transform.12
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