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ABSTRACT

Lattice vector quantization (LVQ) offers substantial reduction
in computational load and design complexity due to the lattice
regular structure [1]. In this paper, we extended the SPIHT
[2] coding algorithm with lattice vector quantization to code
hyperspectral images. In the proposed algorithm, multistage
lattice vector quantization (MLVQ) is used to exploit corre-
lations between image slices, while offering successive re-
�nement with low coding complexity and computation. Dif-
ferent four-dimensional lattices and signi�cance metrics are
considered. Their rate-distortion performance is compared
with other 2D and 3D wavelet-based image compression al-
gorithms.

Index Terms� Lattice vector quantization, SPIHT algo-
rithm, successive re�nement, volume image compression

1. INTRODUCTION

In volumetric image compression, the transform, the quanti-
zation and the coding of quantized coef�cients are all candi-
dates for exploiting the relationships between the slices. Due
to the superior performance over scalar quantization, vector
quantization has been applied in many wavelet-based coding
algorithms.

The Linde-Buzo-Gray (LBG) algorithm [3] is the most
common approach to design a vector quantizer. The LBG
training algorithm causes high computational cost and cod-
ing complexity especially as the vector dimension and bit rate
increase. Lattice vector quantization (LVQ), which is a gen-
eralization of uniform scalar quantization to multiple dimen-
sions, is an approach to reduce the computational complexity
[4], since it requires no training and has fast algorithms to
associate indices of lattice codewords to source vectors.

Lattice vector quantization of wavelet coef�cient vectors
has been successfully employed for image compression [5, 6].
In order to improve performance, it is reasonable to consider
combining LVQ with powerful wavelet-based zerotree or set-
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partitioning image coding methods and bitplane-wise succes-
sive re�nement methodologies for scalar sources, as in EZW,
SPIHT and SPECK. In [7], a multistage lattice vector quanti-
zation is used along with both zerotree structure and quadtree
structure that produced comparable results to JPEG 2000 at
low bit rates. VEZW [8] and VSPIHT [9, 10] have success-
fully employed LVQ with 2D-EZW and 2D-SPIHT respec-
tively. And in VSPECK [11], tree-structured vector quanti-
zation (TSVQ) and ECVQ are used to code the signi�cant
coef�cients for 2D-SPECK.

For volumetric images, especially for hyperspectral im-
ages, neighboring slices convey highly related spatial details.
Since VQ has the ability to exploit the statistical correlation
between neighboring data in a straightforward manner, we
plan to use VQ on volumetric images to explore the corre-
lation in the axial direction. In particular, the multistage LVQ
is used to obtain the counterpart of bitplane-wise successive
re�nement, where successive lattice codebooks in the shape
of Voronoi regions of multidimensional lattice are used.

This paper is organized as follows. We �rst reviews basic
lattice vector quantization and the multistage LVQ. The multi-
stage LVQ-based-SPIHT (MLVQ-SPIHT) is given in Section
3. The performance of the MLVQ-SPIHT for hyperspectral
image compression is presented in Section 4. Section 5 con-
cludes the paper.

2. VECTOR QUANTIZATION

The basic idea of vector quantizer is to quantize pixel se-
quences rather than single pixels. A vector quantizer of di-
mension n and size L is de�ned as a function that maps an ar-
bitrary vector X ∈ Rn into one of L output vectors Y1, Y2, ..., YL

called codevectors belonging to Rn. The vector quantizer is
completely speci�ed by the L codevectors and their corre-
sponding nonoverlapping partitions of Rn called Voronoi re-
gions. A Voronoi region Vi is de�ned by the equation [15]

Vi = {X ∈ Rn/‖X − Yi‖ ≤ ‖X − Yj‖, i 6= j} (1)



2.1. Lattice Vector Quantization

A lattice L in Rn is composed of all integral combinations of
a set of linearly independent vectors. That is

L = {Y |Y = u1a1 + .... + unan} (2)

where{a1, ..., an} is a set of n linearly dependent vectors, and
{u1, ..., un} are all integers. A lattice coset Λ, is obtained
from a lattice L by adding a �xed translation vector t to the
points of the lattice

Λ = {Y |Y = u1a1 + .... + unan + t} (3)

Around each point Yi in a lattice coset Λ, its Voronoi region
is given as

V (Λ, Yi) = {X ∈ Rn/‖X−Yi‖ ≤ ‖X−Yj‖, ∀Yj 6= Yi ∈ Λ}
(4)

The codebook of a lattice quantizer is obtained by select-
ing a �nite number of lattice points out of an in�nite lattice.
An LVQ codebook is decided by a root lattice, a truncation
and a scaling factor. The root lattice is the lattice coset from
which the codebook is actually constructed. A truncation
must be applied on a root lattice in order to select a �nite
number of lattice points and quantize the input data with �nite
energy. The bit rate of the LVQ is determined by the number
of points in the truncated area. To obtain the best accomoda-
tion to the source probability distribution, we must scale and
truncate the lattice properly. To do this, we need to know how
many lattice points lie within the truncated area, i.e. to know
the shape of the truncated area.

Two kinds of truncation shapes are consider in this pa-
per. When the signal to be compressed has an i.i.d. multi-
variate Gaussian distribution, the surfaces of equal probabil-
ity are ordinary spheres. The truncated area is spherical [6].
In these applications the size of the codebook was calculated
by the theta function of the lattice, which was described in
[1]. In the case of Laplacian sources (for cubic lattice) where
surfaces of equal probability are spheres for the L1 metric,
which are sometimes called pyramids. The number of lattice
points Num(n, r) lying on a hyper-pyramid of radius r in
n-dimensional space Rn is given by Fischer [12] as:

N(n, r) = N(n−1, r)+N(n−1, r−1)+N(n, r−1) (5)

The truncation is determined by specifying the shape and ra-
dius of the hypersphere/hyperpyramid that best matches the
probability distribution of the input source. The scaling factor
is used to control the distance between any two nearest lattice
points, i.e. the maximum granular error of the quantizer [7].
The support of the distribution of the granular quantization
error has the shape of the Voronoi region.

2.2. Multistage Lattice Vector Quantization

The essence of our successive re�nement lattice VQ is to gen-
erate a series of decreasing scale zero-centered Voronoi lat-

tice regions, V0(Λ0, 0), V1(Λ1, 0), V2(Λ2, 0), ..., each cover-
ing the zero-centered Voronoi region of the previous higher
scale. The highest scale quantizer is completely speci�ed by
lattice points yi and its corresponding nonoverlapping Voronoi
region V0(Λ0, yi). To prevent divergence of overload quanti-
zation error, the truncated LVQ at current stage should be able
to cover the Voronoi region of the previous stage. On the other
hand, any overlap of quantization regions at two successive
stages will decrease compression ef�ciency. So the optimal
truncated lattice should be consistent with the Voronoi region
of the root lattice [7]. However, this optimal condition can not
be always satis�ed.

Figure 1 gives an example of this multistage LVQ with
the hexagonal A2 lattice and scale-down factor r = 4. First,
input vector x ∈ Rn is quantized to be output vector u0 = y2

by the highest scale quantizer. The uncertainty in x has been
reduced to the Voronoi region V0(Λ0, y2) around the chosen
codevector y2. Next quantizer quantizes the approximation
error (x − u0), which falls into the zero-centered Voronoi
region V0(Λ0, y0), using lower lattice VQ quantizer to ob-
tain a re�nement u1 = zi. Now, the uncertainty in x is re-
duced to the zero-centered Voronoi region V1(Λ1, 0) of lat-
tice coset V1. The next lower scale quantizer quantizes the
error (x− u0 − u1) reducing the uncertainty in x to the zero-
centered Voronoi region of V2. Continuing in this way, the
�nal approximation x̂ of vector x is

x̂ = u0 + u1 + u2 + ...
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Fig. 1. Multistage lattice VQ with A2 lattice.

3. MLVQ-SPIHT

In this section, we describe our new algorithm MLVQ-SPIHT,
which combines multistage lattice vector quantization method-



ology and the SPIHT coding algorithm to code 3D hyperspec-
tral image data sets.

In MLVQ-SPIHT, 2D DWT is applied on each image slice
independently. For a given vector dimension n, we segment
the image sequence of the transformed images into groups of
n slices. The coding algorithm will be applied on every group
independently. For every transformed image slice in the same
group, we group wavelet coef�cients at the same spatial loca-
tion into vectors. For example, for spatial location (i, j) and
transformed slices S1, S2, ..., Sn in the group, the vector asso-
ciated with this location is v(i, j) = (S0(i, j), S1(i, j), ..., Sn−1(i, j)).
A parent-child relationship between the vectors in different
subbands is the same as in [2]. Figure 2 gives an example
of parent-child relationship between vectors when vector di-
mension n = 4.

Vector Four vectors

Fig. 2. An example of parent-child relationship between vec-
tors when vector dimension n = 4.

The SPIHT algorithm is used to search for signi�cance at
the current metric threshold, which is based on certain pre-
de�ned decision regions that gradually decrease in scale fol-
lowing a given rule. Every decision region is de�ned by two
surfaces (one is on the inside, the other is one the outside) en-
closing the origin that successively decrease in size. For every
given decision region, the SPIHT algorithm is used to test the
signi�cance of the N-dimensional vectors. Each sorting pass
locates signi�cant vectors and roughly quantizes those sig-
ni�cant vectors in the same pass. The vectors ascertained as
signi�cant in a pass will be progressively re�ned in succes-
sive passes using our multistage LVQ. Figure 3 uses the A2

lattice to illustrate our vector SPIHT, where the lattice at each
stage decreases in scale by a factor r = 4, the threshold for
SPIHT sorting pass decreases in scale by a factor of 2, and the
L2 norm is used for signi�cant test. The wavelet vectors are
�rst scaled so that all scaled L2 norm vectors will lie within
or on the hyperspherical surface of L2 norm equal to a given
standardized value R. For the �rst sorting pass, the signi�-
cant region is bounded on the outside by the hyperspherical

surface of L2 norm R, and on the inside by the hyperspheri-
cal surface of L2 norm R/2. For the following sorting passes,
the signi�cant regions are bounded by zero-centered hyper-
spherical regions, with the inside one having half scale of the
outside one. For example, if a vector is ascertained as signif-
icant in the �rst sorting pass, i.e., that vector is located in the
1st signi�cant region, the vector is roughly encoded by the
�rst stage LVQ of the 1st signi�cant region, which uses trans-
lations of V/2 lattice coset. When the sorting pass reaches
the third signi�cant region, the vector ascertained as signi�-
cant in the �rst pass will be re�ned by the second stage LVQ,
which uses translations of V/8 lattice coset. As shown in Fig-
ure 3, the bracketed sequences denote the successively lower
scale lattices used to quantize vectors in that signi�cant re-
gion. We believe this scheme can provide good compression
performance with successive re�nement.
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Fig. 3. Vector SPIHT with successive re�nement LVQ.

Based on the above scheme, we implemented a SPIHT-
based coding algorithm using four-dimensional (n = 4) wavelet
vectors as shown in Figure 2. Several LVQs are implemented
in our scheme.

3.0.1. Cubic Z4 LVQ

To de�ne a cubic Z4 LVQ codebook, the root lattice Z4 and
a cubic truncation are used. The cubic truncation requires the
L∞ norm (maximum norm) for vector magnitude measure-
ment. The L∞ norm is de�ned as

‖X‖∞ := max(|x1|, ...|xn|)
For cubic truncation, the bit rate is evenly allocated to every
component. That implies Cubic Z4 LVQ is actually equiva-
lent to four individual scalar quantizers that are applied inde-
pendently to each of the four coef�cient in a vector. The cu-
bic truncation area has exactly the same shape as the Voronoi
region of the corresponding root lattice. And the number of
codewords in the codebook can always be an integer power of
2, which prevents loss in coding ef�ciency. Cubic truncation



does not well match the typical distributions of subband co-
ef�cients and decreases the compression performance. Two
different bit rates are used in our cubic Z4 multistage LVQ.
When a newly signi�cant vector is quantized in its �rst stage
quantizer, an 8-bit LVQ is used to quantize both signi�cance
and signs. In its all re�nement stages, a 4-bit LVQ is used. So
the truncation radius of these two kinds of LVQs are 2 and 1,
respectively. If the threshold is scaled down by two at each
successive layer, these layers are equivalent to bit planes.

3.0.2. Pyramid D4 LVQ

To de�ne a pyramid D4 LVQ codebook, the root lattice D4

and a pyramid truncation are used. The pyramid truncation
requires the L1 norm for vector magnitude measurement. The
L1 norm is de�ned as

‖X‖1 :=
n∑

i=1

|xi|

In our implementation, the truncation radius is set to four.
Lattice points inside this truncation area lie on two hyper-
pyramid surfaces with constant L1 norm 2 and 4, respec-
tively. The number of lattice points on these two shells are
32 and 192, respectively [6]. So 8-bit indexes are used to
code these 225 codewords. The same LVQ codebook is used
in all stages. Since the Voronoi region is determined by mean
square error as shown in Equation 4, and each Voronoi region
of D4 has 24 faces, the Voronoi region is closer to a sphere
and is inconsistent with the shape of the pyramid truncation.
Therefore, to get the best balance between overlaps and gaps
between the Voronoi region at the current stage and that of the
previous stage, the scale-down factor is set to 1/3 [7].

3.0.3. Sphere D4 LVQ

To de�ne a sphere D4 LVQ codebook, the root lattice D4

and a sphere truncation are used. The sphere truncation re-
quires the L2 norm for vector magnitude measurement. The
L2 norm is de�ned as

‖X‖2 :=

√√√√
n∑

i=1

|xi|2

In our implementation, the truncation radius is set to 2. Lat-
tice points inside this truncation area lie on two hyper-sphere
surfaces with constant L2 norm

√
2 and 2, respectively. Each

of these two shells contains 24 points. [6]. So 6-bit indexes
are used to code these 48 codewords. The scale-down factor
is set to 1/2.

4. EXPERIMENTAL RESULTS

The proposed MLVQ-SPIHT algorithm is used compress hy-
perspectral image �Moffet Field�. Its characteristics are ex-
hibited in Table 1.

Image Type Volume Size Bit Depth
(bit/pixel) Power (Px)

AVIRIS 512× 512× 224 16 2177316

Table 1. Characteristics of the image volume Moffett Field
Scene 3

The pyramid wavelet decomposition employed here uses
the S+P wavelet �lter, and a 5-level spatial transform is per-
formed. After wavelet transformation, the magnitude of each
vector is calculated according to the norm corresponding to
the particular LVQ. The fast quantizing and coding algorithm
proposed by Conway and Sloane [13, 14] is used to code the
signi�cant vectors. For each signi�cant region, the LVQ in-
dices are coded using an adaptive arithmetic coder and the
signi�cant information is adaptively arithmetic coded as de-
scribed in [2].

Figure 4 compares the SNR versus rate performance of
MLVQ-SPIHT with scalar SPIHT. SNR is de�ned as the ra-
tio of power to mean-squared error (Px/MSE) in dB. These
results for 2DSPIHT and MLVQ-SPIHT are obtained by �rst
processing each band/four-dimensional band segment sepa-
rately, then averaging all the results. The plots show the MLVQ-
SPIHT offers over 3 dB improvement at 0.1 bpp and 0.5 bpp
for all bands in the sequence. This implies that the hyperspec-
tral sequences are highly correlated, and using vector quanti-
zation along the wavelength axis can ef�ciently exploit these
inter band correlations.

Table 2 compares the rate-distortion results for MLVQ-
SPIHT using different LVQs with 3D-SPIHT, 3D-SPECK and
JPEG2000 multi-component integer implementation for the
Moffett hyperspectral image volume [16]. Five-levels of the
dyadic S+P (B) integer �lter were applied on all three dimen-
sions for 3D-SPIHT and 3D-SPECK. For JPEG2000 multi-
component, �ve-level 1D S+P (B) �lter was �rst applied on
spectral axis followed by (5,3) �lter on spatial domain. For
MLVQ-SPIHT, to enable SNR scalability, bit stream bound-
aries are maintained for every coding layer. To compare with
those three dimensional compression algorithms, bits belong-
ing to the same fraction of the same coding layer in the the
different four dimensional vector bands can be extracted for
decoding. The results show that at low bit rates, MLVQ-
SPIHT algorithms outperforms 3D compression algorithms.
As the bit rate increases, 3D algorithms give better perfor-
mance. And in general, sphere D4 LVQ shows better perfor-
mance than cubic Z4 LVQ.

5. SUMMARY AND CONCLUSIONS

In this paper, we presented a multidimensional image com-
pression algorithm which is an extension of SPIHT with lat-
tice vector quantization and support successive re�nement. In
the proposed algorithm, multistage lattice vector quantization
is used to exploit correlations between image slices. Cubic
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Fig. 4. Comparison of lossy performance of for Moffet Field
image, scene 3.

Z4 LVQ, sphere D4 LVQ and pyramid D4 LVQ are imple-
mented in the proposed scheme. The experimental results
show that MLVQ-based-schemes exploit the inter-band cor-
relations along the wavelength axis and provide better rate-
distortion performance at low bit rate than 2DSPIHT and those
algorithms that employ 3D wavelet transforms.
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